5-1 Simplifying Square Roots and Pythagorean Theorem Notes

Review of Simplifying Radicals: Square Roots

A square root (radical) is an expression that contains a \qquad where the \qquad
The goal to simplifying radicals is to \qquad .

The easiest way to do this is by \qquad .

Example 1: Simplify each square root completely.
a. $\sqrt{64}$
b. $\sqrt{27}$
c. $\sqrt{180}$
d. $5 \sqrt{28}$
e. $2 \sqrt{24}$
f. $3 \sqrt{8} \cdot 2 \sqrt{5}$
g. $\frac{2 \sqrt{3}}{\sqrt{16}}$
h. $\frac{\sqrt{2}}{3 \sqrt{72}}$
i. $\frac{12 \sqrt{50}}{4 \sqrt{2}}$

Review of the Pythagorean Theorem

Pythagorean Theorem \rightarrow
Remember \rightarrow The \qquad represents a side of a right triangle that forms the right angle

The \qquad represents the side across from the right angle and is the longest side When finding missing sides your answers MUST be in \qquad
Example 2: Find the length of the missing side x of each given right triangle. Keep in radical form.

Example 3 - Critical Thinking: Find the length of x. Round to tenth place.

(2)

Example 4: For the following - a. Draw a picture representing each word problem.
b. Solve for what the problem is asking for. Round to tenth place.

a. A telephone support cable attaches to the pole 20 feet high. If the cable is 26 feet long, how far from the bottom of the pole does the cable attach to the ground?	b. Tara leaned a ladder against her house. The bottom of the ladder is 12 feet from the house and the top of the ladder is 14 feet above the ground. How long is the ladder?	c. A walkway forms one diagonal of a square playground. The walkway is 18 meters long. How long are the sides of the playground?

