5-2 Adding and Subtracting Rational Expressions Notes

When adding or subtracting fractions, you must have a \qquad .
To find a \qquad , you must find the \qquad
Follow these steps to find a common denominator:

1. \qquad each denominator in the problem
2. Here is what to do with each "broken down" denominator:

- Monomial denominators - write the factor that's written the greatest number of times
- Binomial denominators - write repeated factors once, write different factors automatically
- Denominators of complex fractions - multiply all terms by LCM of the denominators

Example 1: Find the LCM of each set of polynomials.

a. $12 a b^{2}$ and $6 a^{2} b$	b. $18 x^{2} y^{3} z$ and $24 x^{3} y$	c. $x^{2}+x-12$ and $x+4$	d. $x^{2}+5 x+6$ and $x^{2}+3 x$

Example 2: Add or subtract each set of rational expressions. Simplify answers completely.
a. $\frac{2 x}{15 y^{2}}+\frac{y}{10 x y}$
b. $\frac{x}{x^{2}-x-20}+\frac{2}{x+4}$

c. $\frac{x}{x^{2}-4}-\frac{2}{3 x+6}$	d. $\frac{x+12}{4 x-16}-\frac{x+4}{2 x-8}$
$\frac{3}{\frac{a}{b}-\frac{b}{a}}$	
e. $\frac{3}{3 x+6}+2$	h.

