A rational function is a function that is a	and has a	in the
(orig	inally) and/or	·
Graphing Rational Functions		
• Since rational functions contain variabl	es in the denominator, then its	graph contains
• There are two types of Points of Discor	tinuity	
	-	
 Vertical asymptotes – 	that a graph	L
0	of discontinuity which	
 Holes – 	that create an	in the middle of the graph
• When graphing rational functions, you	will have to find specific chara	cteristics:
• whi	ch include	and
(draw with dotted lines)		
• whi	ch include	and
(plot with closed points)		
• whi	ch occur when any	
(plot with open points)		
\circ If a rational function has only 1 VA	A, then there will be	to sketch in the graph.
\circ If a rational function has 2 VA's, t	hen there will be	to sketch in the graph.
 How to find all the needed information VA (x = ?) – set denominator = 0, 		
 • VA (x = ?) - set denominator = 0, • HA (y = ?) - refer to the degrees o 		
 Degree of numerator < Degree 		
	e of denominator $-y = ratio of$	lead coefficients
\circ x-intercepts (?, 0) – set numerator	-	
\circ y-intercept (0, ?) – ratio of constan	ts (make sure numbers are mul	tiplied out)
• hole (x, y) – occurs when the facto	r cancels out, set the canceled o	but factor = 0, solve for x, plug x
back into reduced function to get the	ne value of y.	

Example: Complete the table about each rational function, then graph it on the coordinate plane. Use a colored pen or pencil to draw the asymptotes. Show your work.

1.
$$f(x) = \frac{4}{2x-4}$$

VA(s)	НА	x-int(s)	y-int	Hole

2. $f(x) = \frac{3x+6}{x+1}$

VA(s)	НА	x-int(s)	y-int	Hole

3.
$$f(x) = \frac{x^2 - 3x - 4}{x - 4}$$

VA(s)	HA	x-int(s)	y-int	Hole

4.
$$f(x) = \frac{2x^2 - 5x + 2}{2x^3 + 3x^2 - 2x}$$

VA(s)	НА	x-int(s)	y-int	Hole

