A rational function is a function that is a \qquad and has a \qquad in the
\qquad (originally) and/or \qquad -.

Graphing Rational Functions

- Since rational functions contain variables in the denominator, then its graph contains \qquad
- There are two types of Points of Discontinuity
- \qquad of discontinuity which \qquad
- Vertical asymptotes - \qquad that a graph \qquad
\circ \qquad of discontinuity which \qquad
- Holes - \qquad that create an \qquad in the middle of the graph
- When graphing rational functions, you will have to find specific characteristics:
- \qquad which include \qquad and \qquad
(draw with dotted lines)
- \qquad which include \qquad and \qquad (plot with closed points)

○ \qquad which occur when any \qquad
(plot with open points)

- If a rational function has only 1 VA , then there will be \qquad to sketch in the graph.
- If a rational function has 2 VA 's, then there will be \qquad to sketch in the graph.

- How to find all the needed information:

- VA $(x=?)-$ set denominator $=0$, factor, and solve for x
- HA $(y=?)-$ refer to the degrees of numerator and denominator
- Degree of numerator < Degree of denominator - HA: y = 0
- Degree of numerator $=$ Degree of denominator $-\mathrm{y}=$ ratio of lead coefficients
- x -intercepts $(?, 0)-$ set numerator $=0$, factor, and solve for x
- y-intercept ($0, ?$) - ratio of constants (make sure numbers are multiplied out)
- hole (x, y) - occurs when the factor cancels out, set the canceled out factor $=0$, solve for $\mathrm{x}, \mathrm{plug} \mathrm{x}$ back into reduced function to get the value of y.

Example: Complete the table about each rational function, then graph it on the coordinate plane. Use a colored pen or pencil to draw the asymptotes. Show your work.

1. $f(x)=\frac{4}{2 x-4}$

VA(s)	HA	x-int(s)	y-int	Hole

2. $f(x)=\frac{3 x+6}{x+1}$

VA(s)	HA	x-int(s)	y-int	Hole

3. $f(x)=\frac{x^{2}-3 x-4}{x-4}$

VA(s)	HA	x-int(s)	y-int	Hole

4. $f(x)=\frac{2 x^{2}-5 x+2}{2 x^{3}+3 x^{2}-2 x}$

VA(s)	HA	x-int(s)	y-int	Hole

