8-2 The Unit Circle and Finding Exact Value Notes

A <u>unit circle</u> is a circle with a radius of 1 and centered at (0, 0) and has equation of $x^2 + y^2 = 1$

- **reference angle** \rightarrow an acute angle formed between a drawn angle θ and the x-axis.
- **terminal point** \rightarrow a point (*x*, *y*) that falls on the Unit Circle.
- **cosine function** \rightarrow represents the *x*-coordinate of the terminal point of an angle on the Unit Circle.
- sine function \rightarrow represents the y-coordinate of the terminal point of an angle on the Unit Circle.

Unit Circle Information:

Ref Angle کا Ref	Ref Angle ر Xef	Ref Angle ر 60° and 240
$150^{\circ} and 330^{\circ} = 30^{\circ}$	$135^{\circ} and 315^{\circ} = 45^{\circ}$	$120^{\circ} and 300^{\circ} = 60^{\circ}$

- 1. Degrees will be on the inner circle.
- 2. Radians will be on the middle circle.
- 3. Terminal point will be on the outer circle ($x = \cos \theta$ and $y = \sin \theta$)

Using our special right triangles (45 - 45 - 90 and 30 - 60 - 90), we know that:

θ	$30^\circ or \frac{\pi}{6}$	$45^\circ or \frac{\pi}{4}$	$60^\circ or \frac{\pi}{3}$	Where is it positive?
sin $ heta$				
cos θ				
$\tan heta$				

Example 1: Using your Unit Circle Sheet, answer each question.

a. What is the reference angle for the angle of 240°?	b. What is the reference angle for the angle of $\frac{3\pi}{4}$?	c. What is the reference angle for the angle of -750° ?
d. What is the terminal point for the angle of 510°?	e. What is the terminal point for the angle of $-\frac{9\pi}{4}$?	f. If you are at terminal point (0, 1) and move 300° CCW, what angle did you stop at that is on the UC?

Steps to Find Exact Value of an Angle: Some answers contain radicals/fractions (NO decimal answers)

- 1. Make sure your angle is between 0° and 360° or between 0 and 2π . If it is not, add/subtract 360° or 2π .
- 2. Locate the correct angle on the Unit Circle. Look at the terminal point if finding the sine or cosine.
- 3. If finding one of the others, use the equations below:

$$\tan \theta = \frac{\sin \theta}{\cos \theta};$$
 $\csc \theta = \frac{1}{\sin \theta};$
 $\sec \theta = \frac{1}{\cos \theta};$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}$

* If finding the exact value of a quadrant angle (90°, 180°, 270°, or 360°) \rightarrow use values in terminal points

Example 2: Using your Unit Circle, find the exact value. Remember – NO DECIMALS!!!!

a. sin 135° =	b. csc 210° =	c. cos 450° =	d. tan –780° =
e. sec 390° =	f. cot 180° =	g. sin 240° =	h. sec 120° =
i. $\tan\left(\frac{7\pi}{6}\right) = $	h. $\cos\left(\frac{5\pi}{3}\right) =$	j. $\sin\left(\frac{7\pi}{2}\right) =$	k. sec $\left(\frac{-11\pi}{4}\right) =$