8-2 The Unit Circle and Finding Exact Value Notes

A unit circle is a circle with a radius of 1 and centered at $(0,0)$ and has equation of $x^{2}+y^{2}=1$

- reference angle \rightarrow an acute angle formed between a drawn angle θ and the x -axis.
- terminal point \rightarrow a point (x, y) that falls on the Unit Circle.
- cosine function \rightarrow represents the x-coordinate of the terminal point of an angle on the Unit Circle.
- sine function \rightarrow represents the y-coordinate of the terminal point of an angle on the Unit Circle.

Unit Circle Information:

30° and 210° Ref Angle
150° and $330^{\circ}{ }^{\circ}=30^{\circ}$

$$
\left.\begin{array}{c}
45^{\circ} \text { and } 225^{\circ}{ }^{\text {Ref Angle }} \\
135^{\circ} \text { and } 315^{\circ}
\end{array}\right)^{=45^{\circ}}
$$

60° and 240° Ref Angle 120° and $300^{\circ}=60^{\circ}$

1. Degrees will be on the inner circle.
2. Radians will be on the middle circle.
3. Terminal point will be on the outer circle $(x=\cos \theta$ and $y=\sin \theta)$

Using our special right triangles ($45-45-90$ and $30-60-90$), we know that:

θ	30° or $\frac{\pi}{6}$	45° or $\frac{\pi}{4}$	60° or $\frac{\pi}{3}$	Where is it positive?
$\sin \theta$				
$\cos \theta$				
$\tan \theta$				

Example 1: Using your Unit Circle Sheet, answer each question.

a. What is the reference angle for the angle of $240^{\circ} ?$	b. What is the reference angle for the angle of $\frac{3 \pi}{4} ?$	c. What is the reference angle for the angle of $-750^{\circ} ?$
d. What is the terminal point for the angle of $510^{\circ} ?$	e. What is the terminal point for the angle of $-\frac{9 \pi}{4} ?$	f. If you are at terminal point $(0,1)$ and move 300° CCW, what angle did you stop at that is on the UC?

Steps to Find Exact Value of an Angle: Some answers contain radicals/fractions (NO decimal answers)

1. Make sure your angle is between 0° and 360° or between 0 and 2π. If it is not, add/subtract 360° or 2π.
2. Locate the correct angle on the Unit Circle. Look at the terminal point if finding the sine or cosine.
3. If finding one of the others, use the equations below:
$\boldsymbol{\operatorname { t a n }} \theta=\frac{\sin \theta}{\cos \theta} ;$
$\boldsymbol{\operatorname { c s c }} \boldsymbol{\theta}=\frac{1}{\sin \theta} ;$
$\boldsymbol{\operatorname { s e c }} \boldsymbol{\theta}=\frac{1}{\cos \theta} ;$
$\cot \theta=\frac{\cos \theta}{\sin \theta}$

* If finding the exact value of a quadrant angle $\left(90^{\circ}, 180^{\circ}, 270^{\circ}\right.$, or $\left.360^{\circ}\right) \rightarrow$ use values in terminal points

Example 2: Using your Unit Circle, find the exact value. Remember - NO DECIMALS!!!!

a. $\sin 135^{\circ}=$	b. $\csc 210^{\circ}=$	c. $\cos 450^{\circ}=$	d. $\tan -780^{\circ}=$
e. $\sec 390^{\circ}=$	f. $\cot 180^{\circ}=$	g. $\sin 240^{\circ}=$	h. $\sec 120^{\circ}=$
i. $\tan \left(\frac{7 \pi}{6}\right)=$	h. $\cos \left(\frac{5 \pi}{3}\right)=$ \qquad	$\text { j. } \sin \left(\frac{7 \pi}{2}\right)=$	k. $\sec \left(\frac{-11 \pi}{4}\right)=$

